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a b s t r a c t

This paper addresses dynamic synchronization of two FitzHugh–Nagumo (FHN) systems
coupled with gap junctions. All the states of the coupled chaotic system, treating either
as single-input or two-input control system, are synchronized by stabilizing their error
dynamics, using simplest and locally robust control laws. The local asymptotic stability,
chosen by utilizing the local Lipschitz nonlinear property of the model to address addition-
ally the non-failure of the achieved synchronization, is ensured by formulating the matrix
inequalities on the basis of Lyapunov stability theory. In the presence of disturbances, it
ensures the local uniform ultimate boundedness. Furthermore, the robustness of the pro-
posed methods is ensured against bounded disturbances besides providing the upper
bound on disturbances. To the best of our knowledge, this is the computationally simplest
solution for synchronization of coupled FHN modeled systems along with unique advanta-
ges of less conservative local asymptotic stability of synchronization errors with robust-
ness. Numerical simulations are carried out to successfully validate the proposed control
strategies.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Chaos control and synchronization have important potential applications in several areas including biology [1], medicine
[2], chemistry [3], laser technology [4], and secure communication [5] to name but a few. Not surprisingly, it has received a
great deal of attention in the form of theoretical and experimental research [2–8]. For study of this phenomenon during
external electrical stimulation (EES), few models have been developed, the more popular of which are discussed in detail
elsewhere [9,10]. On the basis of these models, different automatic control strategies have also been reported to synchronize
the coupled chaotic systems without considering the gap junctions amongst them, see [11] and references therein.

The job of synchronizing the coupled chaotic systems becomes difficult once the gap junctions are incorporated into their
modular dynamics. The gap junction indeed, due to its important role in information transmittance among coupled systems,
has become a research focus in synchronization and control system studies [12,13]. Researchers, thence, have paid due
attention to the behavior of the gap junctions, specifically using the FitzHugh–Nagumo (FHN) model, to derive the necessary
conditions, and to apply various control approaches to synchronize the coupled chaotic systems for specific applications rep-
resented by FHN model [14–16]. Generally, the proposed solutions seem to be working fine in simulations, and have even
shown robustness to some extent; however, nonlinear control using feedback linearization [14–16] is computationally com-
plex and conservative in nature. This made the synchronization achieving control response sluggish especially at the indi-
rectly controlled state. Furthermore, these systems, in the course of feedback linearization, cancel the nonlinear terms.
Hence, the implementation of such computationally inefficient and conservative control laws is complex, and nearly impos-
sible for a network of sophisticated systems like neurons.
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Chang [17], alternatively, used a general PID approach to synchronize the states of the discrete version of a class of non-
linear delayed chaotic systems. His analysis, however, was limited to estimation of optimal PID parameters via particle
swarm optimization; neither system stability nor even a proof of parameter convergence in view of stabilization was ad-
dressed. Furthermore, too many computations are required to estimate the parameters of the three PID controllers, which
increases the time required for synchronization of coupled systems. Chang’s proposed framework, as such, cannot be applied
to more complex, sophisticated systems requiring fast synchronization.

To address these issues, we propose two simple and locally robust control strategies by treating the coupled chaotic FHN
systems, considered with gap junctions coupling, as single-input and two-input control systems. The local asymptotic sta-
bility of the proposed control laws, formulated by matrix inequalities on the basis of Lyapunov stability theory, guarantees
the complete synchronization of modular states. These matrix inequalities are transformable to linear matrix inequalities
(LMI) for selected control parameters, which can be solved using available LMI tools. The local asymptotic stability is as-
serted by ensuring the states’ boundedness of the addressing real systems (for example, neurons) to effectively address
the non-failure of the achieved synchronization (see [18] as an example and citations therein). This introduces another
advantage of utilizing a less conservative simple control strategy to resolve the design phase and implementation issues.
Such a control, furthermore, allows us to incorporate other local constraints, such as robustness issues, to enhance the per-
formance of the control system. The robustness of both strategies against disturbances is, thus, ensured by the uniform ulti-
mate boundedness (UUB). The LMI formulation, refers to [19,20] and references therein, simplifies the selection of control
parameters and automatically provides a constraint-forming matrix of quadratic Lyapunov function. This, in contrast to
the conventional design-, tuning-and training-based control methodologies previously introduced [14–16,18], effectively
simplifies the design stage of a synchronization strategy.

It is worth mentioning that the single-input scheme responds faster and is more robust to the direct controlling state be-
sides confirming the asymptotic stability and robust performance to both of the states. Conversely, as obvious, the two-input
control approach provides fast synchronization and identical robust performance to both the controlling states but with a
necessity of individual states as controllable. Thence, the effective utilization of the proposed strategies depends on the con-
trollable states of the specific application to which the model is representing. Furthermore, a tradeoff amongst the schemes
is also countable even for the applications providing individual controllable states.

Besides the minor advantages, the main contributions of the paper are summarized underneath.

(i) Synchronization control for local asymptotic stabilization of the error dynamics of Lipschitzian nonlinear FHN systems
coupled with gap junctions.

(ii) The local stability is chosen to address additionally the non-failure of the achieved synchronization by ensuring the
states’ boundedness.

(iii) The robust performance is ensured against bounded disturbances, upper bound to which is also provided in relation to
the control parameters, by the UUB.

(iv) Simplified selection of control parameters and constraint-forming matrix of quadratic Lyapunov function, contrary to
the previously reported design-, tuning-, and training-based control methodologies.

(v) To the best of our knowledge, first time addressing the simplest single-input and simplest two-input control
approaches for complete synchronization of coupled FHN systems with ensured states’ boundedness and an extra fea-
ture of robustness against bounded disturbances.

The paper is organized as follows. Section 2 states the synchronization problem and translates it into the problem of
stabilization of the error dynamics. Section 3 formulates two control strategies to guarantee the asymptotic stability of
the error dynamics with robust assurance. Section 4 verifies the proposed control strategies by means of comparative
simulation results. Section 5 assesses the findings on the basis of benchmarked initial conditions. Section 6 provides conclud-
ing remarks.

2. Problem formulation

Considerable efforts both theoretical and experimental have been devoted to the study of the gap-junctions response to
EES, following the pioneering work of Hodgkin and Huxley [21] of finding the cable model. The cable model is nonlinear, and
its general form interestingly exhibits a variety of behaviors such as complex chaotic attractors and resonances, to simpler
stationary states, periodic orbits, solitary waves, and limit cycles. Furthermore, it behaves complexly in the presence of peri-
odic forcing. The FHN model of FitzHugh [22] and Nagumo et al. [23], one of the simplified forms of the Hodgkin and Huxley
theory, therefore was chosen to prove the proposed synchronization theory for complex chaotic systems in the presence of
periodic forcing. The schematic diagram in Fig. 1 illustrates a sophisticated application of FHN model; the crux scenario of
weakly coupled neurons requiring deep brain stimulation (DBS) (i.e., a form of EES) to synchronize and to enhance the signal
strength for the desired movement initiation or continuation task [24]. The general form of coupled master–slave FHN mod-
ular systems, as depicted by Yanagita et al. [25], is

_x11 ¼ x11ðx11 � 1Þð1� rx11Þ � x21 � gðx11 � x12Þ þ ða=xÞ cos xt;
_x21 ¼ bx11 � vx21;

�
ð1aÞ
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_x12 ¼ x12ðx12 � 1Þð1� rx12Þ � x22 � gðx12 � x11Þ þ ða=xÞ cos xt;
_x22 ¼ bx12 � vx22;

�
ð1bÞ

where x11 and x21 are the normalized states of the master-, x12 and x22 are the normalized states of the slave-FHN systems,
respectively, parameter g represents the strength of gap junctions between the master and slave systems, and (a/x) cosxt
represents the external stimulation current with angular frequency x at time t. The amplitude a and angular frequency x are
taken to be dimensionless [14,15]. The parameters of the coupled model (1) are set to

r ¼ 10; v ¼ 0:1; g ¼ 0:01; x ¼ 0:28p; b ¼ 1; and a ¼ 0:1; ð2Þ

with the initial conditions as

x11ð0Þ ¼ �0:1; x21ð0Þ ¼ �0:1; x12ð0Þ ¼ 0:3; x22ð0Þ ¼ 0:3: ð3Þ

The rationale for choosing such a typical set of initial conditions is to evaluate the synchronizing speed and robust perfor-
mance tradeoff, amongst the proposed methodologies, and in contrast to the pervious findings. Detail validations will be car-
ried out in Section 5, where we will discuss the pros and cons of our proposed strategies for synchronizing the coupled
system (1). Fig. 2 shows the behavior of two coupled chaotic FHN systems, illustrating non-synchronous states and corre-
sponding non-zero states’ errors. It is worth noting that all of the states are bounded showing the physical limits of modeled
practical systems, like activation and recovery voltages of neurons [12]. The effective error bound of the nonlinear states can
be formulated as

kx11 � x12kb 6 1; ð4Þ

where b 2 R+, and k � k denotes the Euclidian norm. Let the state errors of coupled system (1) be defined as

e1 ¼ ðx11 � x12Þ;
e2 ¼ ðx21 � x22Þ:

�
ð5Þ

The derivative of (5) along (1) yields the following error dynamics.

_e1 ¼ �ð1þ 2gÞe1 � e2 þ ð1þ rÞ x2
11 � x2

12

� �
� r x3

11 � x3
12

� �
;

_e2 ¼ be1 � ve2:

(
ð6Þ

It is worth mentioning that the nonlinearity f ðxÞ ¼ ð1þ rÞ x2
11 � x2

12

� �
� r x3

11 � x3
12

� �
is locally Lipschitz [26,27] for all x11, x12

2 R satisfying (4), with a Lipschitz constant L P 0, such that

@f
@x11

ðx11Þ
����

����; @f
@x12

ðx12Þ
����

���� 6 kLk; ð7Þ

Fig. 1. DBS effect on weakly coupled neurons, modeled as FHN systems.
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satisfying

ð1þ rÞ x2
11 � x2

12

� �
� r x3

11 � x3
12

� ��� �� 6 kLe1k: ð8Þ

Hence, the synchronization problem of the coupled chaotic system (1) has been transformed to the problem of stabilization
at the origin. Now, the goal is to appropriately actuate the coupled system (1) by applying external control input(s) such that
limt?1 kek = 0 holds [28,29]. Furthermore, the bounded states of the coupled system, as described in (4), facilitate the design
of a simplest and efficient controller with robust performance.

3. Simplest control methodologies with robustness

3.1. Single-input control approach

The single-input control of the coupled chaotic FHN modular system(1) addresses the chaos synchronization of practical
systems having only one controllable state, x12 here. The single-input control form of coupled system (1) with disturbance-
sensitive states will be

_x11 ¼ x11ðx11 � 1Þð1� rx11Þ � x21 � gðx11 � x12Þ þ ða=xÞ cos xt þ d1;

_x21 ¼ bx11 � vx21;

�
ð9aÞ

_x12 ¼ x12ðx12 � 1Þð1� rx12Þ � x22 � gðx12 � x11Þ þ ða=xÞ cos xt þ d3 þ u1;

_x22 ¼ bx12 � vx22;

�
ð9bÞ
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Fig. 2. Dynamics of coupled chaotic FHN model (1). (a), State space portrait of chaotic master FHN system. (b), State space portrait of chaotic slave FHN
system. (c), Synchronization error, x11 � x12. (d), Synchronization error, x21 � x22.
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where the terms d1 and d3 represent the disturbance signals at the controllable states of the master and slave systems (i.e.,
x11 and x12), respectively.

The proposed simplest single-input control law is given by

u1 ¼ C1e1 þ e3;

_e3 ¼ C2e1;

�
ð10Þ

where C1 and C2 are the controller parameters to be determined. The error dynamics (6) for single-input stabilizing system
(9) by introducing the proposed single control input u1 of (10) become

_e1 ¼ �ð1þ 2g þ C1Þe1 � e2 � e3 þ ð1þ rÞ x2
11 � x2

12

� �
� r x3

11 � x3
12

� �
þ ðd1 � d3Þ;

_e2 ¼ be1 � ve2;

_e3 ¼ C2e1:

8><
>: ð11Þ

Rewriting (11) in matrix form gives

_e ¼ Aeþuþ d; ð12Þ

where

e ¼
e1

e2

e3

2
64

3
75; u ¼

ð1þ rÞ x2
11 � x2

12

� �
� r x3

11 � x3
12

� �
0
0

2
64

3
75; d ¼

d1 � d3

0
0

2
64

3
75;

and

A ¼
�ð1þ 2g þ C1Þ �1 �1

b �v 0
C2 0 0

2
64

3
75:

Note that u is locally Lipschitz as defined in (8) and satisfies the following inequality.

uTu 6 eT FT Fe; ð13Þ

where

F ¼
L 0 0
0 0 0
0 0 0

2
64

3
75:

Assumption 1. There exists a positive constant dmax such that dT d 6 d2
max.

Theorem 1. Given that system (9) satisfies Assumption 1, if there exist proper values of C1 and C2 such that the matrix inequalities

P > 0; p11 6 b; and
AT P þ PAþ FT F P

� �I

" #
¼ �S < 0 ð14Þ

are solvable with initial conditions satisfying ðx11ð0Þ � x12ð0ÞÞ2p11 6 1, where p11 represents the first row and first column entry of
P = PT > 0. Then the control law given by Eq. (10) ensures the following:

(i) The local asymptotic stability with states always satisfying the bound kx11 � x12kp11 6 1 enclosed by kx11 � x12kb 6 1, if
d = 0, and

(ii) the locally uniformly ultimately bounded stability with states always satisfying kx11 � x12kb 6 1, if d – 0 and
(iii) the robustness against bounded disturbances (dmax 6 kmin/(2pmaxb)) by maximizing kmin.

Proof. Define the following Lyapunov function candidate

V ¼ eT Pe: ð15Þ

The derivative of V along error system (12) implies

_V ¼ eTðAT P þ PAÞeþ eT PuþuT Peþ eT Pdþ dT Pe: ð16Þ

From (13) and (16), we have

_V 6 eTðAT P þ PAþ FT FÞeþ eT PuþuT Pe�uTuþ eT Pdþ dT Pe: ð17Þ

M. Aqil et al. / Commun Nonlinear Sci Numer Simulat 17 (2012) 1615–1627 1619
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Rewriting (17) in matrix form yields

_V 6 �wT Swþ eT Pdþ dT Pe; ð18Þ

where w ¼ eT uT
� �T and S is the same as in (14). Here, two cases arise:

Case I (d = 0): This makes (18) to

_V 6 �wT Sw: ð19Þ

Therefore, _VðtÞ < 0 implies two things.

(a) The inequality (x11 � x12)2p11 < (x11(0) � x12(0))2p11 is satisfied. Additionally, the inequality p11 P b ensures
that kx11 � x12kp11 6 1 is a subset of kx11 � x12kb 6 1. Hence, the synchronization error (0,0,0) is asymptoti-
cally stable in the region kx11 � x12kp11 6 1 enclosed by kx11 � x12kb 6 1 for t P 0. Note that p11 can be min-
imized to get the maximum stability region.

(b) The inequality S < 0 ensures the asymptotic convergence of error e to zero.

Hence, the local error trajectory (12) asymptotically converges to zero. This completes the proof of statement (i).

Case II (d – 0): Appropriate simplifications transform (18) to

_V 6 �2kminkwk2 þ 4pmaxdmaxkwk ¼ �kwk½2kminkwk � 4pmaxdmax�; ð20Þ

where kminis the minimum eigenvalue of S/2, pmax = max{p11,p12, . . . ,p1n}, and {p11,p12, . . . ,p1n} are the elements of the first
row of matrix P of order n, which is n = 3 in this particular case. Two further cases arise here:

Case II (a). The right side of (20) is negative as long as the term inside the square bracket is positive, which implies

kwk > 2pmaxdmax

kmin
: ð21Þ

Thus, _V < 0 is valid outside the compact set. Hence, the synchronization error is asymptotically stable for the region
k x11 � x12kp11 6 1 enclosed by kx11 � x12kb 6 1 for t P 0, as was proved in Case I (a).

Case II (b). Contrary situation to Case II (a); we have

kwk2 ¼ eT eþ /T/ 6
4p2

maxd2
max

k2
min

; ð22Þ

which leads to attain the error bounded condition

eT e 6
4p2

maxd2
max

k2
min

; ð23Þ

and trivially to

e2
1 6

4p2
maxd2

max

k2
min

: ð24Þ

Further reduced form to this, when multiplied with b, yields the nonlinear states’ error bounded condition
kx11 � x12kb 6 ð2pmaxdmaxbÞ=kmin. Thus, to always ensure the effective error boundedness of the nonlinear states,
kx11 � x12kb 6 1, the condition (2pmax dmaxb)/kmin 6 1 has been imposed which reveals the relation of the upper bound of
the controlled disturbances with the control parameters as

dmax 6
kmin

2pmaxb
: ð25Þ

Hence, _V < 0 is valid outside a compact set. This reveals the robustness in terms of UUB on kwk (i.e. e1 and e2) in consensus with
the standard Lyapunov theorem extension [30,31] utilized by various researchers (see [15] as an example); and effectively en-
sures the boundedness of the states in kx11 � x12kb 6 1, if dmax 6 kmin/(2pmaxb). This completes the proof of statement (ii).

The proposed strategy provides the robustness against disturbances in two ways.

a. By maximizing the minimum eigenvalue of S/2, kmin, we can increase the maximum allowable limit, the upper bound
dmax, of the controlled disturbances in consent to (25).

b. For a fixed value of dmax, maximization of kmin decreases the error bound in accordance to (23) and (24).

This completes the proof of statement (iii) and effectively proves Theorem 1 in its entirety. h
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3.2. Two-input control approach

This is the general case of coupled chaotic FHN modular system (1), specifically addressing the chaos synchronization of
corresponding practical systems having both states directly controllable. The two-input control form of coupled system (1)
with disturbance-sensitive states will be

_x11 ¼ x11ðx11 � 1Þð1� rx11Þ � x21 � gðx11 � x12Þ þ ða=xÞ cos xt þ d1;

_x21 ¼ bx11 � vx21 þ d2;

�
ð26aÞ

_x12 ¼ x12ðx12 � 1Þð1� rx12Þ � x22 � gðx12 � x11Þ þ ða=xÞ cos xt þ d3 þ u1;

_x22 ¼ bx12 � vx22 þ d4 þ u2;

�
ð26bÞ

where the terms d1 and d3 represent the disturbance signals at the x11 and x12 states, respectively (as was addressed in pre-
vious sub-section), and similarly the terms d2 and d4 represent the disturbance signals at the x21 and x22 states of the master
and slave systems, respectively.

The proposed simplest two-input control law is given by

u1 ¼ C1e1 þ e3;

_e3 ¼ C2e1;

�
ð27aÞ

u2 ¼ C3e2 þ e4;

_e4 ¼ C4e2;

�
ð27bÞ

where Cj (j = 1, . . . ,4) are the controller’s parameters that need to be determined appropriately to obtain the desired
performance.

Remark 1. It is noteworthy that the design of our unified control laws (10) and (27) is much simpler than that developed in
[14–16]. Such control laws, with their superior computational efficiency, are advantageous to real-time synchronization of
multiple chaotic coupled FHN modular systems.

Writing error dynamics (6) for two-input stabilizing system (26) by introducing the proposed multiple control inputs u1

and u2 from (27) yields

_e1 ¼ �ð1þ 2g þ C1Þe1 � e2 � e3 þ ð1þ rÞ x2
11 � x2

12

� �
� r x3

11 � x3
12

� �
þ ðd1 � d3Þ;

_e2 ¼ be1 � ðv þ C3Þe2 � e4 þ ðd2 � d4Þ;
_e3 ¼ C2e1;

_e4 ¼ C4e2:

8>>><
>>>:

ð28Þ

Rewriting in matrix form as

_e ¼ Aeþuþ d; ð29Þ

where

e ¼

e1

e2

e3

e4

2
6664

3
7775; u ¼

ðr þ 1Þ x2
11 � x2

12

� �
� r x3

11 � x3
12

� �
0
0
0

2
6664

3
7775; d ¼

d1 � d3

d2 � d4

0
0

2
6664

3
7775;

and

A ¼

�ð1þ 2gÞ þ C1 �1 �1 0
b �ðv þ C3Þ 0 �1

C2 0 0 0
0 C4 0 0

2
6664

3
7775

with u being locally Lipschitz as defined in (8), having form

uTu 6 eT FT Fe; ð30Þ

where

F ¼

L 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

2
6664

3
7775:
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Theorem 2. Given that system (26) satisfies Assumption 1, if there exist proper values of Cj (j = 1, . . . , 4), such that the following
matrix inequalities

P > 0; p11 6 b; and AT P þ PAþ FT F P
� �I

� 	
¼ �S < 0; ð31Þ

are solvable with initial conditions satisfying ðx11ð0Þ � x12ð0ÞÞ2p11 6 1, where p11 represents first row and first column entry of
P = PT > 0. Then the control law given by equation (27) ensures the following:

(i) The local asymptotic stability with states always satisfying the bound kx11 � x12kp11 6 1 enclosed by kx11 � x12kb 6 1, if
d = 0, and

(ii) the locally uniformly ultimately bounded stability with states always satisfying kx11 � x12kb 6 1, if d – 0 and
(iii) the robustness against bounded disturbances (dmax 6 kmin/(2pmaxb)) by maximizing kmin.

Proof. Same as that of Theorem 1. h

Remark 2. The proposed methodology ensures the boundedness of the states for synchronization of coupled locally Lipchitz
FHN chaotic systems even in the presence of disturbances. It also provides the upper bound on disturbances for which locally
uniformly ultimately bounded stability is ensured with states satisfying kx11 � x12kb 6 1;8t P 0. Due to this feature, the suit-
able control parameters ensuring the boundedness of the states in addition to disturbance rejection can be selected for the
synchronization of the coupled FHN systems.

Remark 3. The local instead of global asymptotic stability, selected by ensuring the boundedness of the states, makes con-
trol laws (10) and (27) less conservative than previously reported synchronization methodologies [14,15]. This effectively
allows for incorporation of the robustness against bounded disturbances, if any, and, consequently, enhances control system
performance within the region.

Remark 4. It is interesting to find that the proposed matrix inequality based control methodology, solvable by LMI-tools for
known control parameters C, abridges the design further by providing simplified parameter selection criteria. The automatic
finding of constraint-forming matrix of the quadratic Lyapunov function reduces the efforts required for classical controller
design methodologies reported by [14–16].

4. Simulation results

In this section, numerical simulations are performed to synthesize the proposed strategies. The same set of model param-
eters as provided in (2), and the typically selected initial conditions (3), are used throughout this section.

4.1. Single-input control

The proposed single-input control law (10) with parameters C1 = 200, and C2 = 50 viable the LMI constraints of Theorem 1 as
strictly feasible by providing the following positive definite matrix P, calculated by MATLAB LMI Toolbox solver, after 11
iterations.

P ¼
2:3877 0:0408 0:0542
0:0408 0:2491 0:1463
0:0542 0:1463 0:2016

2
64

3
75: ð32Þ

To illustrate the synchronization of two coupled chaotic systems without the channel noise, the disturbance sources of sin-
gle-input stabilization model (9) are set to zero; that is, d1,d3 = 0. Fig. 3 shows the single-input-controlled responses of (9)
while the controller is activating at normalized time 100, in order to illustrate the transient behavior. It is apparent from
Fig. 3: the two coupled systems exhibit their own chaotic dynamic behaviors, and are not synchronized until the application
of the control signal. Referring to the magnified transient response of the stabilizing error in Fig. 3(b) and (d), the states’ er-
rors rapidly converge to zero, once the control signal is bring to function. Consequently, the slave system begins to behave
synchronously in relation to the master one, and thus demonstrating the identical behavior of the coupled system.

The robustness of the proposed single-input control is evaluated by adding the high frequency disturbances d1 = 0.1
cos(3.5t) and d3 = 0.1 sin(3.5t) at the stabilizing states x11 and x12, respectively, at the normalized time 300 in the presence
of previously activated (at time 100) control signal u1. Fig. 4, the chronological version of Fig. 3, illustrates the efficiency of
the single-input control in limiting the effect of added disturbances d1 and d3. Appropriate segments of Fig. 4(b) and (d) are
magnified to highlight the resulting small values of UUB on the state errors. As illustrated by Fig. 4, this strategy effectively
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assures that the disturbances have almost no deleterious effect on the stable synchronization of the coupled chaotic system,
verifying the identical behavior of the single-input controlled coupled system even in the presence of disturbances.

4.2. Two-input control

Before analyzing the two-input control strategy, let us investigate the single-input control mechanism further in the pres-
ence of channel noise (disturbances) coming from all of the states of the system (9), which is common for some specific
applications. For this purpose, disturbances d2 = 0.1 cos(3.5t) and d4 = 0.1 sin(3.5t) are also added to the coupled system
(9), at the indirectly stabilizing states x21 and x22, respectively, beside being retaining the previously added disturbances
d1 = 0.1 cos(3.5t) and d3 = 0.1 sin(3.5t) at x11 and x12 states, respectively. It is observed that the synchronization remains in-
tact in the stabilizing states, refer to Fig. 4(a) and Fig. 5(a). The single-input control provides better robust performance
against the disturbances of directly stabilizing states as compare to the disturbances at the indirectly stabilizing states, ow-
ing to its not achieving a small enough UUB on e2, as compared with what was achieved on e1, see Fig. 4(b) and Fig. 5(b). This
lack of robustness bound on the indirectly stabilizing state motivated us to utilize the two-input stabilizer. This is absolutely
practical because the system allows us, most of the time, to actuate both states simultaneously to get better performance in
the presence of disturbances at both the states.

Let us now analyze two-input control strategy (26) for robust synchronization of all of the states of the coupled chaotic
system by means of an efficiently small UUB on both synchronization errors in the presence of all of the sources of distur-
bances. The parameters of proposed two-input controller (27) satisfying the strict feasibility of the LMI constraints of The-
orem 2, are selected as C1 = 200, C2 = 50, C3 = 25, and C4 = 20. With these, the solution of Theorem 2 yields the following
positive definite matrix P, calculated by MATLAB LMI Toolbox solver, after 4 iterations.

0 50 100 150 200 250 300
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

t

x 11
,x

12

x
11

x
12

0 50 100 150 200 250 300
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

t

x 21
,x

22

x
21

x
22

0 50 100 150 200 250 300
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

t

e 2 =
 x

21
-x

22

100 110 120 130 140 150 160 170 180 190 200

-0.1

-0.05

0

0.05

0.1

0.15

0 50 100 150 200 250 300

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

t

e 1 =
 x

11
-x

12

100 110 120 130 140 150 160 170 180 190 200
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Fig. 3. Single-input controller based synchronizing response of coupled chaotic system with d1 = d3 = 0. (a), Responses of first states (x11,x12). (b),
Synchronization error e1. (c), Responses of second states (x21,x22). (d), Synchronization error e2.
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Fig. 4. Single-input controller based synchronizing response of coupled chaotic system with d1 and d3. (a), Responses of first states (x11,x12). (b),
Synchronization error e1. (c), Responses of second states (x21,x22). (d), Synchronization error e2.

0 50 100 150 200 250 300 350 400 450 500
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

t

x 21
,x

22

x
21

x
22

0 50 100 150 200 250 300 350 400 450 500
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

t

e 2 =
 x

21
-x

22

100 150 200 250 300 350 400 450 500
-0.01

-0.0075

-0.005

-0.0025

0

0.0025

0.005

0.0075

0.01

Fig. 5. Single-input controller based synchronizing response of uncontrolled state of coupled chaotic system with d1 to d4. (a), Responses of second states
(x21,x22). (b), Synchronization error e2.
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P ¼

0:8861 �0:0011 0:0731 0:0030
�0:0011 0:6123 �0:0003 0:4529
0:0731 �0:0003 0:3083 0:0030
0:0030 0:4529 0:0030 0:5755

2
6664

3
7775: ð33Þ

The channel noise, specifically all of the disturbance sources, are set to zero initially; that is, d1 , . . . ,d4 = 0. Analogously to
Fig. 3, Fig. 6 demonstrates the stabilization of state errors and, consequently, synchronization, after the transient observing
delayed activation of the proposed two-input control signals. It is also worth noting that this approach speeds up the syn-
chronization of x22 with x21 as well, unlike the case with the single-input control strategy, plotted in Fig. 3.

To evaluate the robustness of the proposed two-input controller, the high-frequency disturbances d1 = 0.1 cos(3.5t),
d2 = 0.01 cos(3.5t), d3 = 0.1 sin(3.5t), and d4 = 0.01 sin(3.5t) are introduced at the normalized simulation time 300. Fig. 7,
the chronological version of Fig. 6, demonstrates how the proposed two-input controller limits the effect of added distur-
bances d1 to d4. The relevant areas of Fig. 7(b) and (d) are magnified to highlight the resulting small values of UUB on the
state errors achieved by maximizing the kmin in accordance to (23) and (24). As demonstrated by Fig. 7, this strategy assures
that disturbances have almost no effect on the stability of the achieved synchronization, verifying the identical behavior of
the two-input-controlled coupled system, even in the presence of all of the sources of disturbance.

5. Discussion

This paper presented noncomplex and computationally efficient techniques to synchronize two coupled chaotic FHN sys-
tems, called master and slave systems. The adopted strategy stabilizes the error dynamics of the two states of the coupled
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Fig. 6. Two-input controller based synchronizing response of coupled chaotic system with zero disturbances (d1,d2,d3, and d4). (a), Responses of first states
(x11,x12). (b), Synchronization error e1. (c), Responses of second states (x21,x22). (d), Synchronization error e2.
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model, effectively synchronizing them, through two simplified control approaches, namely single-input and two-input. The
efficiencies of the two approaches are illustrated in Figs. 3–7, detailed descriptions of which have already been provided in
Simulation Results (Section 4).

It should be noted that the effect of the simplest single-input control strategy is relatively slow at the un-activated state of
the coupled system, somehow similar, but with simplest approach, to the results reported in almost all of the previously
published papers having conservative and complex control approaches (see [14,15], as well as citations therein). It was
not observed there, because the selected initial conditions were already situated at the synchronization line of the state
space portrait on the x21 � x22 plane. Thus, measuring the reliability (speed and precision) of the two proposed strategies,
against each other and against all of the previously reported techniques, was the main reason behind the selection of similar
model parameters but unique initial conditions in (2) and (3) respectively. Consequently, the single-input scheme responds
faster and is more robust to the direct controlling state besides confirming the asymptotic stability and robust performance
to both the states. This problem of slow and less robust behavior with regard to the indirectly activated state is completely
resolved by the two-input control strategy, which actuates both states simultaneously, to obtain fast synchronization of both
the states with identical robust performance.

6. Conclusion

In this paper, synchronization of two coupled FHN modular systems for effective synchronization of most of the physical
chaotic systems of various fields (chemistry, medicine, biology, laser technology, and secure communication) was consid-
ered. The robust synchronization was achieved by stabilizing the error dynamics of the corresponding states of the coupled
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Fig. 7. Two-input controller based synchronizing response of coupled chaotic system with nonzero disturbances (d1,d2,d3, and d4). (a), Responses of first
states (x11,x12). (b), Synchronization error e1. (c), Responses of second states (x21,x22). (d), Synchronization error e2.
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locally Lipchitz FHN chaotic systems; local asymptotic stability in the absence of disturbances, and locally uniformly ulti-
mately bounded stability in the presence of bounded disturbances, upper bound to which was also formulated in relation
to the control parameters. Two approaches were proposed: The single-input scheme responds faster and is more robust
to the direct controlling state besides confirming the asymptotic stability and robust performance to both the states, The
two-input control approach provides fast synchronization and identical robust performance to both the controlling states
but with a necessity of individual states as controllable. Thence, the effective utilization of the proposed strategies depends
on the controllable states of the specific application to which the model is representing. Furthermore, a tradeoff amongst the
schemes is also countable even for the applications providing individual controllable states. Both stratagems make the prac-
tical implementation of coupled chaotic FHN modular systems a straightforward and easy task, owing to their advantageous
simplicity (there are no nonlinear or gap junction terms), computational efficiency (they have a simple mathematical form
utilizing rare floating parameters and derivative terms), and the paradigm meditation (they provides robust performance
against the disturbances, allowable upper bound to which are directly related to the control parameters). Simulation results
demonstrated the proposed strategies’ effectiveness.
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